axX;

5% [14c]

ij = aminj
If we take a Cartesian coordinate system with the

normal n to the slip plane as axis 1 and the slip

direction m as axis 2, the components of n are

(1, 0, 0) and those of m are (0, 1, 0). Matrix [14]

then becomes

1 0 0
F=|a 1 0 [15]
0 0 1

With the deformation gradient matrix given by Eq. [15],
Eq. [5] reduces to

AL =(§—:)2 ='1'+aP? + 2aP, P, [16]
while Eq. [6] yields

p1= g—‘l’Pl [17a]

p2= ;—j(apl + Py) [17b]

ps = ﬁpg [17¢]

Here P,, P,, and P; are the direction cosines
(with respect to the same coordinates as m and n
above) of the initial direction of any arbitrary ma-
terial line; p., p2, and ps are the corresponding val-
ues after the deformation; 1,/1, is the ratio of final
to initial length.

These formulas are applicable to tensile testing
when the deformation corresponds to a single active
slip system. The grip system maintains the direction
of the material line along the tensile axis. This line,
however, rotates with respect to the lattice, and hence
with respect to our coordinate system which is fixed
in the lattice. With P along the tensile axis, the above
formulas enable one to find the length ratio 1,/1, and
the rotation of the tensile axis with respect to the lat-
tice. The amount of shear, a, can be expressed in
terms of the initial and final positions of the tensile
axis by solving Eq. [17b] for a after substituting for
1o/ 1, from [17a]. The result is

geld _ It [18]

P P,

Egs. [16] to [18] have been derived previously by
Mark, Polanyi, and Schmid.®

As a specific application, Fig. 1 shows a standard
(001) stereographic projection. If the tensile axis P
of a single-crystal rod lies anywhere within the stand-
ard [001]-[111]-{011] triangle, then according to the
Schmid law the active slip system for a fcc crystal is
(111)[101] (the primary slip system). It is convenient
to use [111], [101], [121] as Cartesian coordinate axes,
in which case the deformation gradient matrix is given
by Eq. [15], and the remaining formulas [16] to [18]
are directly applicable.

TWO OR MORE SLIP SYSTEMS

In extending the treatment to two (or more) slip
systems A and B, we express the corresponding de-
formation gradient matrices (see Eq. [14a]) as
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Fp=1 +ampy n£
F3=[+bm3ng = § +Bam3ng [19]
where B =b/a is the ratio of glide-shear of the two
slip systems. If shear in A is followed by shear in B,
the deformation gradient matrix for the combination is

FpFp=1 +a(mAn£ +5mBn£) +aZB(mBn£mAn£)

=] +aF, +a’F, [20]

where F, = mAng + BmBng and F, =Bm3n§mAn£. If

shear in B is followed by shear in A, the combined
result, given by FxFpg, is the same except that F»
=Bmyn mBng. Note in general mAnZ{mB_n
+m BanAng since this is a matrix product.
Physically, we imagine that the final configuration
resulting from the operation of the two slip systems
is reached by a long series of steps in which a small
deformation F4 (or Fp) is followed by a small defor-
mation Fg (or Fp). Thus, we expect to represent the
final configuration mathematically by a deformation
gradient matrix which is the limit of (FpF4)N as
N — while a — 0 in such a way that the product
Na = o, a finite constant designating the accumulated
amount of shear in slip system A. The desired limit is

F = lim (FgFa)¥/® = lim ( +aF, +a’F,)*/
a—0 a—0
= 1 F 1 ZFZ + 1_ 3F3
=1+ 1+§0’ 1 3!0 1 ese
= eaFl [21J

Since F, does not enter the final result, (FpFp )N has
the same limit. Thus, as expected, the final configu-
ration is independent of the exact sequence of opera-

100

100

Fig. 1—Standard (001) stereographic projection for a cubic
crystal. A single crystal whose tensile axis P lies inside the
triangle deforms by (111)[101] (primary) slip. If tensile axis
lies along the [001]-[111] line, equal slip on (111)[T01] (pri-
mary) and (111)[011] (conjugate) results. Arrows indicate
path of axial rotation.
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tion of the two slip systems, in contrast to the result
of a sequence of two finite shears. It can easily be
shown that Eq. [21] is likewise applicable to more than
two slip systems. The matrix F, will in general take
the form Fy =m nj +Bmpnh +ymnl + -

It remains now to evaluate the matrix ¢®F1 of Eq.
[21]. We first note that any similarity transformation
that diagonalizes af, also diagonalizes e®F1, Letus
suppose that a nonsingular matrix S has been found
such that

Ayl 1 QBT 5D
S@F)S'=al0 A, 0|=aA [22]
0 0 A3
Then,
i
A =5EFyst=| 0 ™2 0 [23]
0 0 s
and ¢*f1 can be found from
I = ST S(e*F1)s7']S = 57H(e2A)S [24]

This evaluation requires diagonalization of the matrix.
E. N. Gilbert® has shown us an elegant method, pre-
sented in the Appendix, of evaluating e®F1 without di-
agonalization. The calculations will now be illustrated
with the following deformation.

CASE OF (110)[112] COMPRESSION

Fig. 2 shows the standard (110) stereographic pro-
jection. If a fcc single crystal is compressed on the
(110) plane and constrained to flow in the [112] direc-
tion (by confining the crystal to a channel), slip will
occur equally in the two systems A = (111)[101] and
B = (111)[011] as a result of a favorable resolved
shear stress on these systems. In evaluating my, mp,

Fig. 2—Standard (110) stereographic projection. For com-
pression on (110) and elongation in [112], the active slip sys-
tems are (111)[011] and (111)[101].
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and so forth, of Eq. [20], it is convenient to take the
specimen axes as Cartesian coordinates, i.e., let
X1,X2, X3 be respectively along [110],[111],[112],
Fig. 2. The matrix of transformation from cubic axes
to those above is

[100] [o10] [o001]

1 )
110}, 17
- = 1 1 1
LU S i [25]
- 1 1 2
112} | 77 rhrpgetnaing

Hence, if i,,i,,i3 are unit vectors along the specimen
axes and I, I, I; along the cubic axes, we have, for
(111)[101] slip,

1 ’ ? )
nA=T3(11+12+I3)=‘/l_.611—%12-*%13
26]
1 V3 [
mg = = =T = 3h- -
and for (111)[011] slip,
1 V2
nB=‘\/%(11‘*12-13):—\/%11*’512‘?213
e [27]

1 1
mB=T2(Iz+Is)=§11+Tia

From Egs. [14] and [26], we have

st fe -
V6 6 3V2
¥+ 0 1 0 [28]
a a a
— e AT et
V2 2V3 V6.

where shear in the negative sense has been chosen to
conform with compression along X;.
Similarly, Eqs. [14] and [27] yield

1-2 b ol )
V6 6 3V2
Fg= 0 1 0 [29]
_ B | b
V2 2V3 V6.
Hence in the expected case of equal slip, b =a,
’ __2_‘L ; ﬁ & a’ a’
V6 3 3V6 3V3
FpFy = 0 1 0 [30]
£ a® 2a

- gl el 1+ +a—2
V3 V3 3V2 V6 3

In the form of Eq. [20], FgF4 =1 +aF, + a’F,,

2
-= 0 0

V6
Fi=| 0 0o 0
025102 S 5rul
V3 Ve
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