
ax· 
_l = {j .. -am.n . 
aXj lJ l J [ 14cJ 

If we take a Cartesian coordinate system with the 
normal n to the slip plane as axis 1 and the slip 
direction m as axis 2, the components of n are 
(1, 0, 0) and those of mare (0, 1,0). Matrix [14J 
then becomes 

F = [~ : :J [15J 

With the deformation gradient matrix given by Eq. [15], 
Eq. [5J reduces to 

2 (ll)2 1 2 2 2 AP= y;, = + aP1 + aP 1 P 2 [16J 

while Eq. [6J yields 

lo 
P1 = y;P1 [17aJ 

lo ( h = y; aP 1 + P 2) [17bJ 

lo 
P 3 = y; P 3 [17cJ 

Here P 1 , P 2, and P 3 are the direction cosines 
(with respect to the same coordinates as m and n 
above) of the initial direction of any arbitrary ma­
terial line; P1, P2, and P3 are the corresponding val­
ues after the deformation; h / lo is the ratio of final 
to initial length. 

These formulas are applicable to tensile testing 
when the deformation corresponds to a single active 
slip system. The grip system maintains the direction 
of the material line along the tensile axis. This line, 
however , rotates with respect to the lattice, and hence 
with respect to our coordinate system which is fixed 
in the lattice. With P along the tensile axis, the above 
formulas enable one to find the length ratio ll/ lo and 
the rotation of the tensile axis with respect to the lat­
tice. The amount of shear, a , can be expressed in 
terms of the initial and final positions of the tensile 
axis by solving Eq. [17b] for a after substituting for 
l o/ II from [17aJ. The result is 

a=P2_P2 [lsJ 
PI P 1 

Eqs. [16J to [IS] have been derived previously by 
Mark, Polanyi, and Schmid.3 

As a specific application, Fig. 1 shows a standard 
(001) stereographic projection. If the tensile axis P 
of a single-crystal rod lies anywhere within the stand­
ard [OOl}-[I11J-[011] triangle, then according to the 
Schmid law the active slip system for a fcc crystal is 
(111)[i01] (the primary slip system). It is convenient 
to use [111], [iol], [121] as Cartesian coordinate axes, 
in which case the deformation gradient matrix is given 
by Eq. [15], and the remaining formulas [16] to [IS] 
are directly applicable. 

TWO OR MORE SLIP SYSTEMS 

In extending the treatment to two (or more) slip 
systems A and B, we express the corresponding de­
formation gradient matrices (see Eq. [14aJ) as 
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FA=I + amAnI 

Fa =1 + bm8n~ =1 + f3amBn~ [19J 

where f3 = b/ a is the ratio of glide-shear of the two 
slip systems. If shear in A is followed by shear in B , 
the deformation gradient matrix for the combination is 

FBFA = I + a(mAn! + f3man~) + a 2f3(mBn~mAn!) 

= 1 + aF I + a2F 2 [20 J 

where FI = m An! +f3mBn~ and F 2 = f3man~mAnJ.. If 
shear in B is followed by shear in A , the combined 
result, ~iven by F AF8, is the same except that F 2 
= 8mA~ man'!;. Note in general mAnIman~ 
*- manamAnJ. since this is a matrix product. 

Physically, we imagine that the final configuration 
resulting from the operation of the two slip systems 
is reached by a long series of steps in which a sm all 
deformation FA (or F8) is followed by a small defor­
malion F8 (or FA). Thus, we expect to represent the 
final configuration mathematically by a deformation 
gradient matrix which is the limit of {FBF A)N as 
N - 00 while a - 0 in such a way that the product 
Na = 0', a finite constant designating the accumulated 
amount of shear in slip system A. The desired limit is 

F = lim {FBFAy:t/a = lim (I + aF 1 + a 2F d 4 a 
a-O a- O 

1 2 2 1 3 3 = I + C\'F 1 + Z-O'F 1 + 3[O'F I + ... 

= eOl F1 [21J 

Since F 2 does not enter the final result, (FA F 8 )N has 
the same limit. Thus , as expected, the final configu­
ration is independent of the exact sequence of opera-

Too 

100 

Fig. I-Standard (001) stereogr aphic projection for a cubic 
crystal. A single crystal whose tensile axis P lies ins ide the 
triangle deform~ by (].11)[101] (primary) slip. If tensile axis 
lies along the [001]-[111] line, equal slip on (111)[101] (pri­
mary) and (111)[011] (conjugate) results . Ar rows indicate 
path of axial rotation. 
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tion of the two slip systems , in contrast to the result 
of a sequence of twojinite shears. It can easily be 
shown that Eq. [21] is likewise applicable to more than 
two slip systems. The matrix Fl will in general take 
the form Fl = mAnI + (3mBn~ + ymcn~ + .... 

It remains now to evaluate the matrix eO/Fl of Eq. 
[21]. We first note that any similarity transformation 
that diagonalizes CiF 1 als 0 diagonalizes eO/Fl. Let us 
suppose that a nonsingular matrix S has been found 
such that 

S(oF,)S-' " {~ ~ [22] 

Then, 

eO/A = S(~Fl)S-l = [~Al e~A2 : ] 

o 0 eO/As 

[23J 

and eO/ Fl can be found from 

~Fl = S-l[S(~Fl)S-l]S = S-l(~A)S [24] 
This evaluation requires diagonalization of the matrix. 
E . N. Gilbert9 has shown us an elegant method, pre­
sented in the Appendix, of evaluating eO/Fl without di­
agonalization. The calculations will now be illustrated 
with the following deformation. 

CASE OF (110)[112] COMPRESSION 

Fig. 2 shows the standard (110) stereographic pro­
jection. If a fcc single crystal is compressed on the 
(110) plane and constrained to flow in the [112] direc­
tion (by confining the crystal to a channel), slip will 
occur equally in the two systems A ;: (111)[101] and 
B ;: (111)[011] as a result of a favorable resolved 
shear stress on these systems. In evaluating rnA, mB, 

111 

iIi 
Fig . 2-Standard (110) s te r eographic prOjection. For com­
pres s ion on (110) and elongation in [11 2], the active s lip sys­
te ms are (111)[011) and (111)[101). 
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and so forth , of Eq. [20], it is convenient to take the 
specimen axes as Cartesian coordinates, i .e., let 
Xl , X 2 , Xs be respectively along [110],[111],[112], 
Fig. 2. The matrix of transformation from cubic axes 
to those above is 

[100] [010] [001] 

[110] 
1 1 

0 
12 12 

[111] 
1 1 1 

[25] - ,[3 ,[3 - ,[3 

[112] 1 1 2 
- f6 f6 f6 

Hence, if iI, i 2 , 1s are unit vectors along the specimen 
axes and 11,12 , Is along the cubic axes, we have , for 
(111)[101] slip, 

1(1 I I) 2 . 1. 12. 
nA = ,[3 1 + 2 + 3 = f6 11 - "3 1 2 + """3 13 

1 1.,[3 
rnA = f2 (11 - Is) = Z11 - 2 is 

[26] 

and for (111)[011] slip, 

2 2 1 12. 
nB = /3 (11 + 12 - 13 ) = f6 il + 3 12 - T 13 

1 1 /3 . 
mB = T2 (12 + Is) = Zit + 2 is 

[27] 

From Eqs. [14] and [26], we have 

['-~ 
a 

f6 6 

FA " ~ 1 

a 
- 2/3 

-'.~] 
1 + -

f6 

[28] 

where shear in the negative sense has been chosen to 
conform with compression along Xl. 

Similarly, Eqs . [14] and [27] yield 

FB = ['-.: -~ '::] [29] 

- {2 -2,[3 1 + ,[[ 

Hence in the expected case of equal slip , b = a, 

2a a 2 a2 a 2 

1 -- + -
3f6 3ft f6 3 

FBFA = 0 1 0 [30] 

a 2 a a2 2a a 2 

ft -73-312 1 + 16 + -
6 3 

2 
0 0 - f6 

F 1 = 0 0 0 

0 
1 2 

- /3 f6 
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